cessful, so a sample of questionable quality for X-ray studies was finally used. The crystal studied was cleaved from a larger one in a nitrogenfilled glovebag and transferred under a nitrogen atmosphere to the cold stream of the goniostat. After the crystal was cooled to $-161^{\circ} \mathrm{C}$, a search of a limited hemisphere of reciprocal space located reflections that were indexable as monoclinic, space group $A 2 / a$. The structure was in fact isomorphous with the molybdenum analogue, and the cell was chosen to agree with the latter. The cell dimensions obtained at $-161^{\circ} \mathrm{C}$ from 54 reflections with Mo $\mathrm{K} \alpha(\lambda=0.71069 \AA$) were $a=18.053$ (19) $\AA, b=$ 18.251 (17) $\AA, c=10.575$ (8) $\AA, \beta=87.18$ (4) ${ }^{\circ}, V=3480$ (2) \AA, Z $=4$, and $d_{\text {caled }}=1.734 \mathrm{~g} \mathrm{~cm}^{-3}$ with space group $A 2 / a$.

A total number of 3494 reflections was collected with use of standard moving-crystal moving-detector techniques with the following values: scan speed $4.0^{\circ} \mathrm{min}^{-1}$, scan width $2.0+$ dispersion, single background time at extremes of scan 5 s , aperture size $3.0 \times 4.0 \mathrm{~mm}$. The limits of data collection were $5^{\circ}<2 \theta<50^{\circ}$. Of the 3494 reflections collected, 2294 reflections were unique. The number of reflections with $F>$ $2.33 \sigma(F)$ was 1627.

The fractional coordinate for $\mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO})$ were used as a starting point for the refinement. As in the case of the molybdenum compound, a disorder was apparent in the bridging isopropoxy groups. Isotropic refinement converged to $R(F)=0.123$ and $R_{w}(F)=0.109$.

While the faces of the crystal were uneven, due to fracturing, approximate indices could be assigned. With use of these indices and the crystal dimensions, an analytical absorption correction was performed ($\mu(\mathrm{MoK} \alpha)=67.89 \mathrm{~cm}^{-1}$, maximum and minimum absorption 0.61 and 0.95).

The final residuals are $R(F)=0.0769$ and $R_{\mathrm{w}}(F)=0.0584$, and the maximum Δ / σ for the last cycle was 0.05 for the absorption-corrected data. When attempts were made to assign anisotropic thermal param-
eters to the light atoms of the structure, the residual did not indicate a significant improvement.

A final difference Fourier synthesis contained several peaks of intensity 1.3-2.4 e \AA^{-3} within $1 \AA$ of the tungsten atoms but otherwise was featureless. The rather poor precision of the structure is undoubtedly due to a combination of the disorder and a poor absorption correction.

Acknowledgment. We thank the Office of Basic Sciences, Chemistry Division, U.S. Department of Energy, the Wrubel Computing Center, and the taxpayers of the state of Indiana for support of this work. M.H.C. is also grateful for a Camille and Henry Dreyfus Teacher-Scholar Grant.

Registry No. $\mathrm{W}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mathrm{py})_{2}, 70178-75-5 ; \mathrm{W}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO})$, 83436-99-1; $\mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO})$, $83437-00-7 ; \mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}$, 62509-78-8; $\mathrm{W}_{2}(\mathrm{ONeO})_{6}\left(\mathrm{HNMe}_{2}\right)_{2}(\mathrm{~m}-\mathrm{CO}), 83437-01-8 ; \mathrm{W}_{2}(\mathrm{ONeo})_{6}-$ $\left(\mathrm{HNMe}_{2}\right)_{2}, 83437-02-9 ; \mathrm{Mo}_{2}\left(\mathrm{ONeo}_{6}\left(\mathrm{HNMe}_{2}\right)_{2}(\mu-\mathrm{CO}), 83437-03-0\right.$; $\mathrm{Mo}_{2}(\mathrm{ONeO})_{6}\left(\mathrm{HNMe}_{2}\right)_{2}, 83437-04-1 ; \mathrm{Mo}_{2}\left(\mathrm{ONeO}_{6}{ }_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO}), 83437-\right.$ $05-2 ; \mathrm{Mo}_{2}(\mathrm{ONeo})_{6}(\mathrm{py})_{2}, 81987-92-0 ; \mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(i-\mathrm{PrOH})_{2}(\mu-\mathrm{CO})$, 83447-51-2; $\mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mu-\mathrm{CO}), 83437-06-3 ; \mathrm{Mo}(\mathrm{CO})_{6}, 13939-06-5$; $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})$, ${ }^{5}$ 546-68-9.

Supplementary Material Available: Tables of observed and calculated structure factors and anisotropic thermal parameters (32 pages). Ordering information is given on any current masthead page. The complete structural reports, MSC Report No. 8062, $\mathrm{Mo}_{2}(\mathrm{O}-i-\mathrm{Pr})_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO})$, and No. 81042, $\mathrm{W}_{2}(\mathrm{O}-i-$ $\mathrm{Pr}_{6}(\mathrm{py})_{2}(\mu-\mathrm{CO})$, are available, in microfiche form only, from the Indiana University Chemistry Library.

Total Synthesis of Racemic Chorismic Acid and (-)-5-Enolpyruvylshikimic Acid ("Compound Z_{1} ")

Donald A. McGowan and Glenn A. Berchtold*
Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received April 14, 1982

Abstract

A new synthesis of methyl 4-epi-shikimate (6) is described. Ester 6 is used as the starting material for a total synthesis of racemic chorismic acid (1), the branch-point intermediate in the biosynthesis of aromatic amino acids and growth factors in microorganisms and higher plants. The procedure developed for the construction of the enolpyruvate functionality of 1 is applied also to the synthesis of (-)-5-enolpyruvylshikimic acid (5), a secondary metabolite derived from the biosynthetic precursor of chorismic acid.

The glucose-derived shikimate pathway and the acetate-derived polyketide pathway are the major routes for the biosynthesis of aromatic compounds from acyclic, nonaromatic precursors in bacteria, fungi, and higher plants. The shikimate pathway is better understood due to the successful isolation of discrete intermediates. ${ }^{1}$ Chorismic acid (1, Scheme I) is the last common intermediate in aromatic biosynthesis from shikimic acid. Unambiguous proof that 1 is the intermediate between 5 -enolpyruvylshikimic acid 3-phosphate (2) and prephenic acid (3) in the biosynthesis of phenylalanine and tyrosine was estabished after Gibson and collaborators developed a mutant of A. aerogenes from which 1 was isolated, ${ }^{2}$ and the structure and absolute stereochemistry were determined. ${ }^{3}$ Other work has established that 1 serves also as a biosynthetic precursor to p-aminobenzoic acid, anthranilic acid, tryptophan, hydroxybenzoic acids, and numerous

[^0]Scheme I

other aromatic derivatives. ${ }^{1}$ Of special interest from the chemical standpoint are the enzyme-catalyzed rearrangement of 1 to isochorismic acid (4) ${ }^{4}$ and to 3 . The latter transformation, presumably a Claisen rearrangement, is unique to 1 and 4 , and in the case of 1 , the enzymatic reaction has been studied in detail. ${ }^{5}$
(4) Young, I. G.; Batterham, T. J.; Gibson, F. Biochim. Biophys. Acta 1969, 177, 389-400; 1968, 165, 567-568.

Scheme II

"Compound \mathbf{Z}_{1} ", 5-enolpyruvylshikimic acid (5), has been observed as a secondary metabolite from hydrolytic cleaveage of the phosphate ester group of 2. ${ }^{6}$ Metabolite 5 has no known biological function.

The synthesis of disodium prephenate (free acid unstable) has been accomplished in the laboratories of Danishefsky ${ }^{7}$ and Plieninger. ${ }^{8}$ Ikota and Ganem have developed a synthesis of norchorismic acid. ${ }^{9}$

Described below are (1) a new, convenient preparation of methyl 4-epi-shikimate (6), (2) the total synthesis of racemic chorismic acid from $6,{ }^{10}$ and (3) a synthesis of (-)-5-enolpyruvylshikimic acid from shikimic acid

Although racemic 6^{11} and the $(-)$ and (\pm) forms of the acid ${ }^{11,12}$ have been prepared, in our hands a more convenient route to 6 was that outlined in Scheme II. Epoxidation $\left(\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}\right)$ of diene 7^{13} afforded 8 which was isomerized to 9 with 1,5-diazabicyclo-[4.3.0]non-5-ene (DBN). ${ }^{14} \quad$ Epoxidation of 9 with m-chloroperbenzoic acid (mCPBA) gave 10 and the corresponding anti isomer ${ }^{15}$ in a ratio of 19:1 (${ }^{1} \mathrm{H}$ NMR). Solvolysis of $\mathbf{1 0}$ in refluxing acetic acid gave a 3:1 mixture of acetates (${ }^{1} \mathrm{H}$ NMR) of which the major isomer (11) resulted from the desired mode of oxirane cleavage at C_{5}. Acetate cleavage of the mixture $\left(\mathrm{CH}_{3} \mathrm{O}^{-}\right.$ $\mathrm{CH}_{3} \mathrm{OH}$) and acidification gave a crude syrup from which pure, crystalline 6 was obtained by treatment with hot ethyl acetate. The overall yield of 6 from 7 was $\sim 20 \%$, and the sequence was convenient for large-scale preparation. Triol 6 prepared in this fashion was devoid of isomeric impurities and was identical with a sample of 6 prepared by the procedure of Grewe and Kersten. ${ }^{11}$

For the synthesis of $\mathbf{1}$ from 6, we envisaged transformation of the C_{3} hydroxyl group to the enolpyruvate derivative and conversion of the $\mathrm{C}_{4}, \mathrm{C}_{5}$ diol to an oxirane to provide 19 (Scheme III) for further elaboration to 1. Although literature procedures are available for the synthesis of enolpyruvates, ${ }^{16}$ for a variety of
(5) (a) Andrews, P. R.; Haddon, R. C. Aust. J. Chem. 1979, 32, 1921-1929. (b) Görisch, H. Biochemistry 1978, 17, 3700-3705. (c) Andrews, P. R.; Cain, E. N.; Rizzardo, E.; Smith, G. D. Biochemistry 1977, 16, 4848-4852. (d) Andrews, P. R.; Smith, G. D.; Young, I. G. Biochemistry 1973, 12, 3492-3498.
(6) (a) Davis, B. D.; Mingioli, E. S. J. Bacteriol. 1953, 66, 129-136. (b) Sprinson, D. B. Adv. Carbohydr. Chem. 1960, 15, 235-270. (c) Levin, J. G.; Sprinson, D. B. J. Biol. Chem. 1964, 239, 1142-1150. (d) Edwards, J. M. Thesis, University of Melbourne, 1966.
(7) Danishefsky, S.; Hirama, M. J. Am. Chem. Soc. 1977, 99, 7740-7741. Danishefsky, S.; Hirama, M.; Fritsch, N.; Clardy, J. Ibid. 1979, 101, 7013-7018.
(8) Gramlich, W.; Plieninger, H. Tetrahedron Lett. 1978, 3619-3622 Chem. Ber. 1979, 112, 1550-1570, $1571-1584$.
(9) Ikota, N.; Ganem, B. J. Chem. Soc., Chem. Commun. 1978, 869-870.
(10) A portion of this work has been described in preliminary form: McGowan, D. A.; Berchtold, G. A. J. Am. Chem. Soc. 1982, 104, 1153-1154
(11) Grewe, R.; Kersten, S. Chem. Ber. 1967, 100, 2546-2553.
(12) Snyder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1973, 95, 7821-7828.
(13) Grewe, R.; Hinrichs, I. Chem. Ber. 1964, 97, 443-448.
(14) The preparation of 8 and 9 were developed in our laboratory by Dr. Robert W. Ashworth, Thesis, M.I.T. 1977.
(15) Fex, T.; Trofast, J.; Wickberg, B. Acta Chem. Scand. 1981, 35, 91-95.
(16) See, for example: (a) Engelhardt, M.; Plieninger, H.; Schreiber, P. Chem. Ber. 1964, 97, 1713-1715. (b) Ikota, N.; Ganem, B. J. Org. Chem. 1978, 43, 1607-1608. (c) Lingens, F.; Sprossler, B. Liebigs Ann. Chem. 1967, 709, 173-184. (d) Divers, G. A.; Berchtold, G. A. Synth. Commun. 1977, 7, 43-48

Scheme III

Scheme IV

reasons they were unattractive, and a new procedure was developed. The synthesis involved conversion of the C_{3} hydroxyl to a malonate derivative by literature methods to effect similar substitution on the nitrogen atom of β-lactams. ${ }^{17}$ Subsequent fragmentation of the Mannich base quaternary salt derivative was effected by modification of the literature procedure for the preparation of acrylic esters. ${ }^{18}$

The epimeric benzylidine acetals (12, 4:1, Scheme III) were condensed with dimethyl oxomalonate ${ }^{19}$ to afford 13 which, without purification, was treated with thionyl chloride in pyridine to give 14 (42% from 12). At this stage of the synthesis the acetal functionality of 14 was cleaved with N -bromosuccinimide in dry benzen ${ }^{20}$ to give crystalline 15 (66\%) and regioisomer 20 (7%) due to cleavage at C_{4}. Confirmation of the structure of regioisomer

[^1]15 is provided from the ${ }^{1} \mathrm{H}$ NMR (250 MHz) spectrum which shows H_{4} as a doublet of doublets at $\delta 5.67, J_{\mathrm{H}_{3}-\mathrm{H}_{4}}=6.3 \mathrm{~Hz}$ and $J_{\mathrm{H}_{4}-\mathrm{H}_{5}}=9.4 \mathrm{~Hz}$. The absorption of H_{5} appears as a doublet of triplets at $\delta 4.34, J_{\mathrm{H}_{5} \mathrm{H}_{60}}$ and $J_{\mathrm{H}_{5} \mathrm{H}_{6 \beta}}=9.4$ and 5.4 Hz . Reduction of $\mathbf{1 5}\left(\mathrm{Zn}, 9: 1 \mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}\right.$ in ethyl acetate) afforded 16 in 74% yield. ${ }^{21}$

Reaction of 16 with N, N-dimethylmethyleneammonium iodide (Eschenmoser's salt) in the presence of 1 equiv of triethylamine resulted in quantitative conversion to 17. Mannich base 17 was quaternized with methyl iodide, and the salt was heated at 85-90 ${ }^{\circ} \mathrm{C}$ in dimethyl sulfoxide to effect fragmentation to 18 (64% from 16). Of particular interest was the observation that Mannich base 17 was also formed in high yield from reaction of chloromalonate 15 with Eschenmoser's salt (2 equiv) in the presence of 1 equiv of triethylamine. In this case the reaction was considerably slower, requiring 3-4 days for complete reaction whereas formation of 17 from 16 was complete after 1 h . The reaction did not occur in the absence of triethylamine. It appears that the reaction occurs by I^{-}attack at the chlorine atom of 15 to displace the anion of 16 which reacts with Eschenmoser's salt to afford the Mannich base (17). Triethylamine may drive the reaction forward by acting as a scavenger for ICl^{22}

Reaction of $\mathbf{1 8}$ with methoxide ion in methanol effected cleavage of the benzoate ester with subsequent internal displacement of bromide ion to afford epoxide 19 in 46% yield after recrystallization. The crude reaction mixture contains a minor amount (15%) of 21 which is the only product from the reaction of 18 with DBN in CDCl_{3}.

Completion of the synthesis of 1 is outlined in Scheme IV. Epoxide 19 underwent regiospecific ring opening with phenyl selenide anion $\left(\mathrm{Ph}_{2} \mathrm{Se}_{2}, \mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}\right)^{23}$ to give $23(37 \%)$ and a minor amount (8\%) of lactone 24 . After purification by chromatography on silica gel, 23 was treated with 30% hydrogen peroxide in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ THF at $0^{\circ} \mathrm{C}$ followed by addition of 3 equiv of NaHCO_{3} and stirring at room temperature for 1.5 h to effect elimination of the selenoxide. Crystalline, racemic dimethyl chorismate (25) was obtained in $\mathbf{7 7 \%}$ yield after chromatographic purification. The IR and ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 5}$ were in agreement with the spectroscopic data reported for 25 from the reaction of $(-)-1$ with diazomethane. ${ }^{24}$ The overall yield of $\mathbf{2 5}$ from 19 was 28%, and the yield remained constant when the sequence was repeated without chromatographic purification of selenide 23.

Hydrolysis of $\mathbf{2 5}$ with 2.2 equiv of NaOH in THF/ $\mathrm{H}_{2} \mathrm{O}$ for 3.5 h at $0^{\circ} \mathrm{C}$ followed by treatment with Amberlite IR-120 resin and lyophilization gave a $3: 2$ mixture (${ }^{1} \mathrm{H}$ NMR) of racemic 1 and 22. Acid 22 is the aromatization product from decomposition of 1 in aqueous base. ${ }^{25}$ Successive recrystallization of the crude product from ethyl acetate/hexane, as described for (-)-1, ${ }^{26}$ gave pure, racemic 1 as sharp melting microprisms. The maximum yield of analytically pure material was 11%. The IR, UV, ${ }^{1} \mathrm{H}$ NMR, and mass spectra of synthetic 1 were identical with the corresponding spectra data of (-)-1 prepared in our laboratory ${ }^{26,27}$ from culture growth of A. aerogenes (62-1). ${ }^{28}$

The method of construction of the enolpyruvate functionality of 1 was applied also to a synthesis of 5 as outlined in Scheme V . The carbonate derivative (27) of (-)-methyl shikimate (26) ${ }^{29}$
(21) In our preliminary communication ${ }^{10}$ we described $\mathrm{Zn} / \mathrm{HOAc}$ reduction of chloromalonate 14 prior to cleavage of the benzylidine acetal. The sequence described herein is the superior procedure.
(22) The reaction of tertiary amines with halogens has been investigated: (a) Crane, C. W.; Forrest, J.; Stephenson, O.; Waters, W. A. J. Chem. Soc. 1946, 827-830. (b) Challis, B. S.; Butler, A. R. "The Chemistry of the Amino Group"; Patai, S., Ed.; Interscience: New York 1968; pp 302-304.
(23) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697-2699.
(24) Ife, R. J.; Ball, L. F.; Lowe, P.; Haslam, E. J. Chem. Soc., Perkin Trans 1 1976, 1776-1783.
(25) Young, I. G.; Gibson, F.; MacDonald, C. G. Biochim. Biophys. Acta 1969, 192, 62-72.
(26) Gibson, F. Methods Enzymol. 1970, 17, 362-364.
(27) We thank Dr. John H. Hoare and Peter P. Policastro for isolation of (-)-1.
(28) We thank Professor Frank Gibson for providing a sample of A. aerogenes (62-1).

Scheme V

was prepared by reaction with carbonyldiimidazole. ${ }^{30}$ Carbonate 27 reacted with dimethyl oxomalonate in dry benzene to afford hemiketal 28. Solvent was removed and replaced with THF for reaction at low temperature with thionyl chloride/pyridine to give 29. Crude 29 was reduced ($\mathrm{Zn}, 90 \% \mathrm{HOAc}$) to 30 in 82% overall yield from 27. Mannich base formation (Eschenmoser's salt, triethylamine) provided 31 which was quaternized with methyl iodide. The methiodide salt underwent fragmentation in dimethyl sulfoxide ($70-80^{\circ} \mathrm{C}, 3 \mathrm{~h}$) to afford $\mathbf{3 2}$ in 73% yield from $\mathbf{3 0}$. Hydrolysis of 30 with aqueous NaOH followed by acidification gave (-)-5 (43%) which was $>95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR. Compound 5 is isolated in salt form from natural sources. ${ }^{6}$ Edwards ${ }^{6 d}$ has recorded the ${ }^{1} \mathrm{H}$ NMR of 5 , and he kindly provided a copy for comparison. The method of synthesis and spectral data (see Experimental Section) of synthetic (-)-5 establish the structural assignment.

Experimental Section

Melting points were determined with a Thomas-Hoover Unimelt and are corrected. Infrared spectra were recorded with a Perkin-Elmer Model 238B or Nicolet Model 7199 Fourier transform spectrometer. Ultraviolet spectra were recorded with a Perkin-Elmer Model 552 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 60 MHz (Varian T-60 or Perkin-Elmer R24B), 250 MHz (Brüker WM-250), or 270 MHz (Brüker WM-270). Unless otherwise indicated, spectra were obtained at 250 or 270 MHz , and chemical shift values (δ) are reported in parts per million downfield from tetramethylsilane. ${ }^{13} \mathrm{C}$ NMR spectra were measured at 62.8 or 67.9 MHz (Brüker WM-250 or WM-270), and chemical shift values (δ) are reported in parts per million downfield from tetramethylsilane. Optical rotations were measured with a Perkin-Elmer Model 141 polarimeter. Mass spectra were determined with a Varian MAT 44 instrument. High-resolution mass spectra were provided by the facility supported by National Institutes of Health Grant RR00317 (principal investigator Professor K. Biemann) from the Biotechnology Resources Branch, Division of Research Resources. Microanalyses were performed by Galbraith Laboratories, Knoxville, TN.

Methyl 7-Oxabicyclo[4.1.0]hept-3-ene-3-carboxylate (8). ${ }^{14}$ To a mixture of $7^{13}(58 \mathrm{~g}, 0.42 \mathrm{~mol})$ and anhydrous sodium acetate $(11.2 \mathrm{~g})$ in 500 mL of CHCl_{3} was added dropwise $84 \mathrm{~mL}(0.5 \mathrm{~mol})$ of 40% peracetic acid, and the mixture was stirred at room temperature for 17 h. The mixture was washed with saturated FeSO_{4} solution until there was no color transfer to the aqueous solution. It was then washed with saturated, aqueous NaCl solution and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and evaporation left an oil which was distilled to give $50.5 \mathrm{~g}(80 \%)$ of 8 which crystallized on standing: $\mathrm{mp} 34-35^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1712,1658 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 2.73(4 \mathrm{H}, \mathrm{m}), 3.28(2 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}$, s), $6.76(1 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}: \mathrm{C}, 62.39 ; \mathrm{H}, 6.55$. Found: C, 62.20; H, 6.67.

Methyl 5-Hydroxy-1,3-Cyclohexadiene-1-carboxylate (9). ${ }^{14}$ A solution of $8(15.4 \mathrm{~g}, 0.10 \mathrm{~mol})$ and DBN $(15.0 \mathrm{~g}, 0.12 \mathrm{~mol})$ in 350 mL of ether was heated under reflux for 25 h . The mixture was washed with three $100-\mathrm{mL}$ portions of saturated, aqueous NaCl solution and dried
(29) Diels, O.; Fritzsche, P. Ber. Dtsch. Chem. Ges. 1911, 44, 3018-3027.
(30) Kutney, J. P.; Ratcliffe, A. Synth. Commun. 1975, 5, 47-52.
$\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solvent was removed under reduced pressure to give 12.2 $\mathrm{g}(80 \%)$ of 9 as a pale yellow oil. Diene 9 could be distilled, bp 87-90 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, but due to extensive decomposition on distillation, it was used without purification: IR $\left(\mathrm{CHCl}_{3}\right) 3590,1705,1640,1575 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 2.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.75(2 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}$, s), $4.36(1 \mathrm{H}, \mathrm{m}), 6.18(2 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{m})$.

Methyl ($1 \alpha, 5 \beta, 6 \alpha$)-5-Hydroxy-7-oxabicyclo[4.1.0]hept-2-ene-3carboxylate (10). Alcohol 9 (27.2 g , contaminated with $\sim 10 \%$ of methyl benzoate, 0.16 mol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ under N_{2} with stirring. A solution of mCPBA (35 g of 85% technical grade, 1.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added dropwise. The mixture was stirred overnight at room temperature and the solid removed by filtration. The filtrate was washed with $5 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, NaHCO_{3} solution, and saturated NaCl solution and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent was removed under reduced pressure and methyl benzoate was removed under high vacuum with slight heating to leave crude 10 (17.0 $\mathrm{g}, 65 \%$) as an oil of acceptable purity for further reactions. ${ }^{1} \mathrm{H}$ NMR indicated the product to be $\sim 95 \% 10$ and $\sim 5 \%$ of the corresponding trans isomer. A sample could be distilled (Kugelrohr, $150^{\circ} \mathrm{C}, 0.2 \mathrm{~mm}$), but extensive resinification of the residue occurred: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3580$, $1715,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.02\left(1 \mathrm{H}, \mathrm{t}, J=3.4 \mathrm{~Hz}, \mathrm{H}_{2}\right), 4.15$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67(1 \mathrm{H}, \mathrm{m}$, epoxy H$), 3.53(1 \mathrm{H}$, $\mathfrak{t}, J=4.1 \mathrm{~Hz}$, epoxy H), $2.92\left(1 \mathrm{H}\right.$, ddd, $\left.\alpha \mathrm{H}_{4}\right), 2.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}$, $\mathrm{OH}), 2.13\left(1 \mathrm{H}\right.$, ddd, $\left.\beta \mathrm{H}_{4}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}: \mathrm{C}, 56.47 ; \mathrm{H}$, 5.92. Found: C, $56.28 ; \mathrm{H}, 6.02$.

Methyl 4-epi-Shikimate (6). A solution of $10(8.24 \mathrm{~g}, 48 \mathrm{mmol})$ in glacial HOAc (30 mL) was heated under reflux for 1.25 h and cooled. Solvent was removed under reduced pressure, and the residue was subjected to high vacuum with slight heating to remove final traces of HOAc. The residual syrup of crude 11 was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}$ (75 mL), and NaOCH_{3} was added in portions until the solution was alkaline to litmus. The solution was stirred at room temperature for 1.5 h , and Amberlite IR-120 resin was added to acidify the solution. Charcoal was added. The mixture was stirred for 15 min and filtered through Celite. The filtrate was concentrated in vacuo, and final traces of solvent were removed under high vacuum. Dry ethyl acetate (50 mL) was added, and the mixture was heated with vigorous swirling as product crystallized. The mixture was chilled in a refrigerator and filtered. The precipitate was separated by filtration and washed with cold ethyl acetate to afford $6(4.3 \mathrm{~g}, 47 \%): \mathrm{mp} 152-154^{\circ} \mathrm{C}$ (lit. ${ }^{11} \mathrm{mp} 154-155^{\circ} \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 167.0,139.1,128.0,73.3,68.8,66.8,51.8,70.7$.

Methyl ($1 \alpha, 5 \alpha, 6 \alpha$)-5-Hydroxy-8-phenyl-7,9-dioxabicyclo[4.3.0]non-3-ene-3-carboxylate (12, 8α and 8β). A mixture of $6(1.0 \mathrm{~g}, 5.3 \mathrm{mmol}$), benzaldehyde ($1.5 \mathrm{~mL}, 2.3$ equiv), and a few crystals of p-toluenesulfonic acid in toluene (60 mL) was heated overnight at reflux under N_{2} with a Dean-Stark trap to remove water. The mixture was cooled, washed (bicarbonate solution and saturated NaCl solution), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residual oil was warmed under high vacuum to remove excess benzaldehyde. Flash chromatography ${ }^{31}$ on silica gel with 30% ethyl ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $1.06 \mathrm{~g}(72 \%)$ of 12 as a mixture of isomers (4:1) by ${ }^{1} \mathrm{H}$ NMR analysis: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3580,1715,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49-7.35(5 \mathrm{H}, \mathrm{m}), 6.98$ and $6.95(1 \mathrm{H}, 2 \mathrm{~m}), 6.09$ and $5.82(1 \mathrm{H}, 2 \mathrm{~s}$, acetal H's $), 4.46-4.37(2 \mathrm{H}, \mathrm{m}), 4.19$ and $4.10(1 \mathrm{H}$, $2 \mathrm{~m}), 3.78$ and $3.77(3 \mathrm{H}, 2 \mathrm{~s}), 3.28-3.14(1 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{OH})$, 2.46-2.34 ($1 \mathrm{H}, \mathrm{m}$); MS, $m / e 276\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$: C, $65.21 ; \mathrm{H}, 5.84$. Found: C, $65.23 ; \mathrm{H}, 5.92$.

Methyl ($1 \alpha, 5 \alpha, 6 \alpha$)-5-[Bis(methoxycarbonyl)chloromethoxy]-8-phenyl-7,9-dioxabicyclo[4.3.0]non-3-ene-3-carboxylate (14, 8α and 8β). A mixture of $12(3.79 \mathrm{~g}, 13.7 \mathrm{mmol})$ and dimethyl oxomalonate ${ }^{19}(2.20$ $\mathrm{g}, 15.1 \mathrm{mmol}$) in dry toluene (50 mL) was stirred under N_{2} at $40^{\circ} \mathrm{C}$ for 12 h followed by $80^{\circ} \mathrm{C}$ for 3 h . Solvent was removed under reduced pressure, and the residue was warmed under high vacuum (Kugelrohr, $80-85^{\circ} \mathrm{C}$) to remove excess oxomalonate and leave hemiketal 13 (4.8 $\mathrm{g}, 83 \%$). A portion of $\mathbf{1 3}(450 \mathrm{mg}, 1.1 \mathrm{mmol})$ was dissolved in dry THF (10 mL) with dry pyridine ($103 \mu \mathrm{~L}, 1.2$ equiv) and cooled under N_{2} with stirring to $-20^{\circ} \mathrm{C}$. Thionyl chloride ($150 \mathrm{mg}, 91 \mu \mathrm{~L}$) was added dropwise, and stirring was continued at $-20^{\circ} \mathrm{C}$ for 0.5 h followed by 1 h at $0^{\circ} \mathrm{C}$. The mixture was filtered, and the filtrate was evaporated and subjected to high vacuum. The residue was chromatographed (silica gel, preparative plate, 40% ethyl acetate in hexane) to give $236 \mathrm{mg}(50 \%)$ of 14: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1765,1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.47-7.35(5$ $\mathrm{H}, \mathrm{m}), 7.07$ and $7.00(1 \mathrm{H}, 2 \mathrm{~m}), 6.02$ and $5.74(1 \mathrm{H}, 2 \mathrm{~s}), 4.83$ and 4.72 $(1 \mathrm{H}, 2 \mathrm{~m}), 4.53(2 \mathrm{H}, \mathrm{m}), 3.88,3.86,3.79,3.77$, and $3.69(9 \mathrm{H}, 5 \mathrm{~s}$, $\left.\mathrm{OCH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{md}), 2.72-2.56(1 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClO}_{9}: \mathrm{C}, 54.49 ; \mathrm{H}, 4.80 ; \mathrm{Cl}, 8.04$. Found: $\mathrm{C}, 55.65 ; \mathrm{H}, 5.09 ; \mathrm{Cl}$, 6.78 .

Methyl ($3 \beta, 4 \alpha, 5 \beta$)-3-[Bis(methoxycarbonyl)chloromethoxy]-4-(ben-zoyloxy)-5-bromo-1-cyclohexene-1-carboxylate (15). A solution of 14
(31) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
($163 \mathrm{mg}, 0.37 \mathrm{mmol}$) and N-bromosuccinimide ($72 \mathrm{mg}, 0.41 \mathrm{mmol}$) in 10 mL of dry benzene was stirred overnight at room temperature and was filtered. Solvent was removed under reduced pressure, and the residue was dissolved in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Ether and petroleum ether (1:1) were added, and the solution was cooled overnight to deposit colorless plates of $15(65 \mathrm{mg}), \mathrm{mp} 141-142^{\circ} \mathrm{C}$. The filtrate was evaporated, and the residue was chromatographed (silica gel, preparative plate, 40% ethyl acetate in hexane) to afford 13 mg (7%) of an oil (20 by ${ }^{1} \mathrm{H}$ NMR analysis) and an additional 62 mg of 15 (total yield 66%): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1760,1720,1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(2 \mathrm{H}$, dd, o-Ar-H), $7.59(1 \mathrm{H}, \mathrm{dt}, p$-Ar-H), $7.46(2 \mathrm{H}, \mathrm{t}, m$-Ar-H), $7.01(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2}\right), 5.67\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 4.34(1 \mathrm{H}$, $\left.\mathrm{dt}, J=9.4,5.4 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.62$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.19\left(1 \mathrm{H}\right.$, dd, $J=18.3,5.4 \mathrm{~Hz}, \mathrm{H}_{6}$), $2.94(1 \mathrm{H}$, mdd, $\left.J=18.3,9.3 \mathrm{~Hz}, \mathrm{H}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.3(\mathrm{~s}), 164.9(\mathrm{~s}), 164.4$ (s), 163.6 (s), 134.8 (d), 133.3 (d), 131.2 (s), 129.9 (d), 129.5 (s), 128.4 (d), 94.3 (s), 75.5 (d), 73.7 (d), 54.1 (q), 52.3 (q), 43.7 (d), 33.7 (t). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrClO}_{9}$: $\mathrm{C}, 46.22 ; \mathrm{H}, 3.88 ; \mathrm{Br}, 15.37 ; \mathrm{Cl}, 6.82$. Found: C, $46.52 ; \mathrm{H}, 4.26 ; \mathrm{Br}, 15.25 ; \mathrm{Cl}, 6.89$.

Methyl ($3 \beta, 4 \alpha, 5 \beta$)-3-[Bis(methoxycarbonyl)methoxy]-4-(benzoyl-oxy)-5-bromo-1-cyclohexene-1-carboxylate (16). A solution of 15 (300 $\mathrm{mg}, 0.50 \mathrm{mmol})$ in a mixture of $90 \% \mathrm{HOAc}(6 \mathrm{~mL})$ and ethyl acetate (5 mL) was stirred at $0^{\circ} \mathrm{C}$ while powdered Zn (acid washed, 365 mg , 10 equiv) was added in portions over a period of 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and at room temperature for 30 min . The mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the supernatant was evaporated. The residual oil crystallized under high vacuum. Recrystallization (ether/hexane) gave 206 mg (74%) of 16 as needles: mp $124.5-125.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1760(\mathrm{sh}), 1740,1720,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, o-\mathrm{Ar}-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}, p-\mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, m-\mathrm{Ar}-\mathrm{H}), 7.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right)$, $5.62\left(1 \mathrm{H}, \mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.74\left(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right), 4.52$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 4.28\left(1 \mathrm{H}, \mathrm{dt}, J=10.5,6.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.23(1 \mathrm{H}, \mathrm{dd}, J=18.1,6.1$ $\left.\mathrm{Hz}, \mathrm{H}_{6}\right), 2.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right)$; MS, $m / e 484,486\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}_{9}: \mathrm{C}, 49.50 ; \mathrm{H}, 4.36 ; \mathrm{Br}, 16.47$. Found: $\mathrm{C}, 49.52 ; \mathrm{H}, 4.43$; $\mathrm{Br}, 16.72$.
Methyl (3 $\beta, 4 \alpha, 5 \beta$)-3-[[1-(Methoxycarbonyl)ethenyl]oxy]-4-(benzoyl-oxy)-5-bromo-1-cyclohexene-1-carboxylate (18). Method A (from 16). To a stirring solution of $16(150 \mathrm{mg}, 0.31 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added Eschenmoser's salt ${ }^{32}$ ($69 \mathrm{mg}, 0.37 \mathrm{mmol}$) and triethylamine ($43 \mu \mathrm{~L}$). The mixture, which became homogeneous after 30 min , was stirred for 3 h . The solution was extracted with $\mathrm{H}_{2} \mathrm{O}$ and with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give $170 \mathrm{mg}(100 \%)$ of 17 that was a single spot on TLC: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 8.03$ $(2 \mathrm{H}, \mathrm{m}), 7.6-7.2(4 \mathrm{H}, \mathrm{m}), 5.53(1 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{m}), 4.38(\mathrm{~m}, 1$ H), $3.79(6 \mathrm{H}, \mathrm{s}), 3.44(3 \mathrm{H}, \mathrm{s}), 3.2-2.8(2 \mathrm{H}, \mathrm{m}), 2.88(2 \mathrm{H}, \mathrm{s}), 2.28$ ($6 \mathrm{H}, \mathrm{s}$).

The Mannich base (17) and iodomethane (0.2 mL) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the solution was heated under reflux for 6 h . Evaporation and trituration with ether gave a pale yellow solid which was dried under vacuum and dissolved in a minimum amount of dry $\mathrm{Me}_{2} \mathrm{SO}$. The solution was heated under N_{2} at $85-90^{\circ} \mathrm{C}$ for 4 h , cooled, and filtered to remove insoluble material. Solvent was removed with warming under high vacuum, and the residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The soluble material was chromatographed (silica gel, preparative plate, 40% ethyl acetate in hexane) to afford 87 mg (64%) of 18 as an oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1721,1619 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.03(2 \mathrm{H}, \mathrm{dd}, J=8.5$, $1.5 \mathrm{~Hz}, o-\mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, p-\mathrm{ArH}), 7.46(2 \mathrm{H}, \mathrm{dt}, J=7.7$, $2 \mathrm{~Hz}, m-\mathrm{ArH}), 6.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,7.3 \mathrm{~Hz}, \mathrm{H}_{4}\right)$, $5.50(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}$, trans- $\mathrm{OC}=\mathrm{CH}), 4.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 4.88(1$ $\mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}$, cis $-\mathrm{OC}=\mathrm{CH}), 4.34\left(1 \mathrm{H}, \mathrm{dt}, J=10.3,5.9 \mathrm{~Hz}, \mathrm{H}_{5}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27(1 \mathrm{H}, \mathrm{dd}, J=18.2,5.7$ $\left.\mathrm{Hz}, \mathrm{H}_{6}\right), 2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.2(\mathrm{~s}), 165.1(\mathrm{~s})$, 163.1 (s), 150.0 (s), 134.0 (d), 133.3 (d), 131.2 (s), 129.8 (d), 129.5 (s), 128.4 (d), 100.2 (t), 76.2 (d), 74.2 (d), 52.3 (q), 44.2 (d), 34.7 (t); high-resolution mass spectrum, calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{7}, 438.0314$, 440.0294; found, 4388.0322, 440.0278.

Method B (from 15). A mixture of 15 ($1.17 \mathrm{~g}, 2.25 \mathrm{mmol}$), Eschenmoser's salt ${ }^{32}$ ($890 \mathrm{mg}, 4.81 \mathrm{mmol}$), and triethylamine ($230 \mathrm{mg}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred under N_{2} in the dark for 72 h . Workup as described in method A afforded 1.14 g of Mannich base 17 (80% pure by ${ }^{1} \mathrm{H}$ NMR). Reaction of 17 as described in method A gave 424 mg (43%) of 18 that was identical with 18 prepared by method A.
Methyl ($1 \beta, 5 \beta, 6 \beta$)-5-[[1-(Methoxycarbonyl)ethenyl]oxy]-7-oxabicy-clo[4.1.0]hept-3-ene-3-carboxylate (19). To a solution of 18 (374 mg ,
(32) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew. Chem., Int. Ed. Engl. 1971, 10, 330-331.
0.85 mmol) in dry $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2} was added freshly prepared NaOCH_{3} (46 mg , I equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , at room temperature for 1 h , and at reflux for 0.75 h . The mixture was cooled and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite, and concentrated under reduced pressure. The residual oil was dissolved in a minimum amount of $\mathrm{CH}_{3} \mathrm{OH}$ and chilled to give 83 mg of 19 as white needles: mp $119-120^{\circ} \mathrm{C}$. The filtrate contained unreacted 18 so a methanolic solution of the residue was treated with 18 mg of NaOCH_{3} for 2 h at room temperature and 1 h at reflux. Amberlite IR-120 resin was added to acidify the mixture. The solution was concentrated and chilled to deposit an additional 17 mg of crystalline 19 (46% total yield): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1720,1621 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 5.59(1 \mathrm{H}, \mathrm{d}$, $J=3.3 \mathrm{~Hz}$, trans $-\mathrm{OC}=\mathrm{CH}), 4.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 4.93(1 \mathrm{H}, \mathrm{d}, J=3.3$ Hz, cis $-\mathrm{OC}=\mathrm{CH}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.48(1$ $\mathrm{H}, \mathrm{m}, \mathrm{H}_{1}$ or $\left.\mathrm{H}_{6}\right), 3.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}\right.$ or $\left.\mathrm{H}_{6}\right), 2.94(1 \mathrm{H}, \mathrm{dm}, J=19.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}\right), 2.76\left(1 \mathrm{H}, \mathrm{dm}, J=19.8 \mathrm{~Hz}, \mathrm{H}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.4(\mathrm{~s})$, 163.1 (s), 149.8 (s), 129.3 (d), 128.9 (s), 97.1 (t), 68.8 (d), 52.5 (q), 51.2 (q), 50.7 (d), 50.2 (d), 24.3 (t). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}: \mathrm{C}, 56.69$; H, 5.55. Found: C, $56.55 ; \mathrm{H}, 5.59$.

Dimethyl Chlorismate (25). Diphenyl diselenide ($41 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ and treated with portions of NaBH_{4} until the stirred solution decolorized. ${ }^{23}$ Epoxide 19 ($67 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 4 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added, and the mixture was stirred at room temperature for 72 h . Small portions of NaBH_{4} were added from time to time to keep the solution decolorized. Amberlite IR-120 resin was added tothe stirred mixture, and after 3 min the solution was filtered and concentrated. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-soluble oil was applied to a preparative silica gel plate and eluted wiht 25% ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The UV-active band at $\boldsymbol{R}_{f} 0.77$ afforded 8 mg (8\%) of lactone 24): $\mathrm{mp} 192^{\circ} \mathrm{C}$ (d); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1737,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72-7.68(2 \mathrm{H}, \mathrm{m}), 7.40-7.27(3$ $\mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{m}), 5.68(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{d}, J=1.8$ $\mathrm{Hz}), 4.62(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=11.9,8.1 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.36$ $(1 \mathrm{H}, \mathrm{dt}, J=11.7,6.2 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}, m / e 380$, 378 (M^{+}).

The UV-active band at $R_{f} 0.57$ contained 4 mg (6%) of unreacted 19 and $40 \mathrm{mg}(37 \%)$ of $23:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H})$, $7.37-7.29(3 \mathrm{H}, m, \mathrm{ArH}), 6.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}\right), 5.58(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}$, trans $-\mathrm{OC}=\mathrm{CH}), 4.89(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}$, cis $-\mathrm{OC}=\mathrm{CH}), 4.67(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{3}\right), 3.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.30\left(1 \mathrm{H}, \mathrm{dt}, J=11.7,5.4 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.95(1 \mathrm{H}, \mathrm{dd}, J=18.0,5.4 \mathrm{~Hz}$, H_{6}), 2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}$).

Selenide 23 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$ while $\mathrm{H}_{2} \mathrm{O}_{2}$ ($10.6 \mu \mathrm{~L}, 31.2 \%, 1$ equiv) in 3 mL of THF was added. After the mixture stirred at $0^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h}, 40 \mathrm{mg}$ of NaHCO_{3} was added; and stirring was continued at room temperature for 1.5 h . Filtration through Celite and removal of solvent under reduced pressure gave crude 25 (36 mg). Chromatography (silica gel, preparative plate, $3 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3}) afforded a major UV-active band, $R_{f} 0.3$, which upon elution with ethyl acetate gave pure $25^{24}(19 \mathrm{mg}, 77 \%$ from 23) as an oil that solidified on standing: $\mathrm{mp} 94-96^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3580,1730,1627$ cm^{-1}; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max } 280 \mathrm{~nm}(\epsilon 1950) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91(1$ $\left.\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}\right), 6.35\left(1 \mathrm{H}\right.$, br d, $J=10.3 \mathrm{~Hz}, \mathrm{H}_{5}$ or $\left.\mathrm{H}_{6}\right), 6.05(1 \mathrm{H}$, dd, $J=10.3,2.0 \mathrm{~Hz}, \mathrm{H}_{5}$ or $\left.\mathrm{H}_{6}\right), 5.56(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \operatorname{trans}-\mathrm{OC}=\mathrm{CH})$, $4.90\left(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{4}\right) .4 .86\left(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{4}\right), 4.80(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}$, cis $-\mathrm{OC}=\mathrm{CH}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.15(1 \mathrm{H}$, br s, OH$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 164.7$ (s), 163.6 (s), 149.4 (s), 133.7 (d), 132.0 (d), 129.4 (s), 121.7 (d), 98.7 (t), $81.6(\mathrm{~d}), 70.9(\mathrm{~d}), 52.6(\mathrm{q}), 52.1(\mathrm{q})$; high-resolution mass spectrum, calcd for $\mathrm{C}_{12} \mathrm{C}_{14} \mathrm{O}_{6}, 254.0782$; found, 254.0790 .

Chorismic Acid (1). A solution of $25(21 \mathrm{mg}, 0.08 \mathrm{mmol})$ in THF (0.3 $\mathrm{mL})$ was cooled to $0^{\circ} \mathrm{C}$. Water ($50 \mu \mathrm{~L}$) and $1 \mathrm{~N} \mathrm{NaOH}(180 \mu \mathrm{~L}, 2.2$ equiv) were added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h . Amberlite IR-120 resin (200 mg) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 min . The resin was removed by filtration, and the solvent was rapidly removed under high vacuum. ${ }^{1} \mathrm{H}$ NMR (270 MHz) a analysis indicated complete conversion of $\mathbf{2 5}$ to a $3: 2$ mixture of $\mathbf{1}$ and $22 .{ }^{25}$ The material was triturated with ethyl acetate, insoluble inorganic material was removed by centrifugation, and hexane was added to the supernatant to a cloud point. Cooling to $-10^{\circ} \mathrm{C}$ deposited an off-white solid that was recrystallized from ethyl acetate/hexane to obtain 1 that was 86% pure (14% 22). Three additional recrystallizations provided 1.5 mg of pure 1. In additional runs the maximum yield of analytically pure 1 was 3 mg (11%) from 30 mg of $\mathbf{2 5}$ after three recrystallizations: mp 139.5-141 ${ }^{\circ} \mathrm{C}$; FT IR (THF) 3410 (br), 1739 (sh), $1721,1622 \mathrm{~cm}^{-1}$. UV, ${ }^{1} \mathrm{H}$ NMR, and mass spectral data are documented elsewhere. ${ }^{3.24}$

Methyl $[1 R-(1 \alpha, 5 \alpha, 6 \alpha)]-5-$ Hydroxy-8-oxo-7,9-dioxabicyclo[4.3.0]-non-2-ene-3-carboxylate (27). A solution of (-)-26 ${ }^{29}$ ($1.12 \mathrm{~g}, 5.95 \mathrm{mmol}$) in dry THF (150 mL) was brought to reflux under N_{2}. Carbonyl diimidazole ($3.86 \mathrm{~g}, 4$ equiv) was added in portions over a period of 5 h .

Reflux was continued for 1 h , and the mixture was allowed to cool. A solution of $6 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for 2 h . Most of the THF was removed under reduced pressure, and the residue was partitioned between ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with ethyl acetate, and the combined organic extracts were dried and concentrated to give an oil which was stirred under rflux for 2 h with 150 mL of ether. Insoluble material was separated, and the ether solution was evaporated under reduced pressure to give 1.21 g (95%) of 27 as an oil of high purity by ${ }^{1} \mathrm{H}$ NMR. On distillation (Kugelrohr, bp $200^{\circ} \mathrm{C}, 0.005 \mathrm{~mm}$) the oil crystallized to a white solid: $\mathrm{mp} 80-82.5^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-61.4^{\circ}\left(c 4.13, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3600,3500,1805,1720,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 6.85(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{2}\right), 5.48\left(\mathrm{l} \mathrm{H}, \mathrm{dd}, J=7.5,3.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.84(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{6}\right), 4.09\left(1 \mathrm{H}, \mathrm{dt}, J=7.5,4.8 \mathrm{~Hz}, \mathrm{H}_{1}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.77(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.8,154.2,133.3$, 129.1, 78.2, 73.2, 66.6, 52.4, 28.3. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{6}: \mathrm{C}, 50.47$; $\mathrm{H}, 4.71$. Found: $\mathrm{C}, 50.43 ; \mathrm{H}, 4.91$.

Methyl $[1(R)-(1 \alpha, 5 \alpha, 6 \alpha)]-5-[B i s(m e t h o x y c a r b o n y l) m e t h o x y]-8-o x o-$ 7,9-dioxabicyclo[4.3.0]non-2-ene-3-carboxylate (30). A mixture of 27 $(7.15 \mathrm{~g}, 0.038 \mathrm{~mol})$ and dimethyl oxomalonate ${ }^{19}(4.88 \mathrm{~g}, 1$ equiv) in dry benzene under N_{2} was stirred overnight at room temperature and then for 2 h under reflux. Solvent was removed under reduced pressure to afford hemiketal 38 which was dissolved in a mixture of dry THF (200 mL) and dry pyridine ($3.77 \mathrm{~mL}, 1.4$ equiv). The solution was cooled to $-20^{\circ} \mathrm{C}$, and freshly distilled thionyl chloride ($3.33 \mathrm{~mL}, 1.4$ equiv) was added dropwise with stirring under N_{2}. The mixture was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 30 min and at $0^{\circ} \mathrm{C}$ for 45 min . Solid material was removed by filtration, and solvent was removed under reduced pressure to give 29 as a yellow oil. Crude 29 was dissolved in 150 mL of 90% HOAc at $0^{\circ} \mathrm{C}$. Powdered Zn ($22 \mathrm{~g}, 10$ equiv) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min and then at room temperature for 1.5 h . The mixture was filtered through Celite, and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residual oil was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then ether to give $30(8.41 \mathrm{~g}, 73 \%$ overall) as an oil that solidified to a waxy solid on standing: $[\alpha]^{25} \mathrm{D}-30.4^{\circ}\left(c 3.63, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1810,1740,1720,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.83(1$ $\mathrm{H}, \mathrm{m}), 5.25(1 \mathrm{H}, \mathrm{m}), 4.88(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{s}), 3.96(1$ $\mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.87(1 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{m})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 48.84 ; \mathrm{H}, 4.69$. Found: $\mathrm{C}, 48.58 ; \mathrm{H}, 4.79$.

Methyl $[1(R)-(1 \alpha, 5 \alpha, 6 \alpha)]-5-[[1-($ Methoxycarbonyl)ethenyl]oxy]-8-oxo-7,9-dioxabicyclo[4.3.0]non-2-ene-3-carboxylate (32). To a solution of $\mathbf{3 0}(8.42 \mathrm{~g}, 24.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added Eschenmoser's salt ${ }^{32}(54.3 \mathrm{~g}, 29 \mathrm{mmol})$ and triethylamine $(2.5 \mathrm{~g}, 24.5 \mathrm{mmol})$. The mixture was stirred at room temperature for 3 h . Water was added, and the mixture was vigorously shaken. The aqueous layer was extracted ($4 \times$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Solvent was removed under reduced pressure to give 31 (9.13 $\mathrm{g}, 93 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(1 \mathrm{H}, \mathrm{m})$, $5.45-4.88(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{m}), 3.82(9 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.25-2.48(2 \mathrm{H}, \mathrm{m})$, $2.92(2 \mathrm{H}, \mathrm{s}), 2.28(6 \mathrm{H}, \mathrm{s})$.

Mannich base $31(9.13 \mathrm{~g})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a 10 -fold molar excess of $\mathrm{CH}_{3} \mathrm{I}(141.1 \mathrm{~mL})$, and the mixture was heated under reflux with stirring for 5 h . Solvent was removed under reduced pressure, and the residue was triturated with dry ether. Filtration and vacuum drying gave 11.7 g of the quaternary salt as a pale yellow powder. The salt was dissolved in the minimum amount of dry $\mathrm{Me}_{2} \mathrm{SO}$, and the solution was heated at $75-80^{\circ} \mathrm{C}$ with stirring under N_{2} for 4 h . Insoluble material was removed by filtration, and most of the solvent was removed by high-vacuum distillation. The residue was triturated with cold water. The gummy precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography ${ }^{31}$ on silica gel ($1: 1$ ethyl acetate/hexane) to afford 5.85 g (80% overall) of 32 as an oil: $[\alpha]^{25}$ D $-59.6^{\circ}\left(c 5.10, \mathrm{CHCl}_{3}\right.$); IR (C$\mathrm{H}_{2} \mathrm{Cl}_{2}$) $1805,1720,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.93(1 \mathrm{H}, \mathrm{m}), 5.62$ $(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{m}), 4.90(1 \mathrm{H}, \mathrm{d}, J=$ $3.1 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{md}, J$ $=18.2 \mathrm{~Hz}), 2.64(\mathrm{l} \mathrm{H}, \mathrm{dd}, J=18.2,5.6 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{8}$: $\mathrm{C}, 52.35 ; \mathrm{H}, 4.73$. Found: $\mathrm{C}, 52.11 ; \mathrm{H}, 4.84$.
(-)-5-Enolpyruyylshikimic Acid ("Compound $\mathrm{Z}_{1}{ }^{\prime}, 5$). To a solution of $32(221 \mathrm{mg}, 0.74 \mathrm{mmol})$ in dioxane (3 mL) at $0^{\circ} \mathrm{C}$ was added 1 N NaOH ($2.96 \mathrm{~mL}, 4$ equiv). The mixture was stirred at room temperature for 2 h , and solvent was removed under reduced pressure. Water (2 mL) was added, and sufficint Amberlite IR-120 resin was added with stirring to bring the solution to pH 3.5 . The mixture was filtered, and the filtrate was rapidly concentrated under high vacuum. The resulting glass was triturated with dry methanol. The mixture was filtered, and the filtrate was concentrated under reduced pressure. Dry ether was added, and the white flocculent precipitate was isolated by centrifugation. The material
was redissolved in methanol, precipitated by addition of ether, and isolated by centrifugation. Air drying gave $77 \mathrm{mg}(43 \%)$ of (-)-5 as a white powder that retained traces of solvent but was $>95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR: $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{25} \mathrm{D}-220^{\circ}$ (c $3.00, \mathrm{CH}_{3} \mathrm{OH}$); IR (KBr) $3600-3000,1685 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (methanol- d_{4}) $\delta 6.57(1 \mathrm{H}, \mathrm{dd}, J=4.8$, $\left.1.8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.21\left(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.53(1 \mathrm{H}, \mathrm{d}, J=1.3$
$\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 4.37\left(1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.27(1 \mathrm{H}, \mathrm{dt}, J=9.4,5.6$ $\left.\mathrm{Hz}, \mathrm{H}_{5}\right), 3.80\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,4.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.21(1 \mathrm{H}, \mathrm{dd}, J=18.1$, $\left.5.6 \mathrm{~Hz}, \mathrm{H}_{6 \text { eq }}\right), 2.12\left(1 \mathrm{H}, \mathrm{ddd}, J=18.1,9.5,1.8 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{ax}}\right)$.

Acknowledgment. We are grateful to the National Institutes of Health, Grant GM 19103, for financial support.

Synthesis of Alkenes with P-(α-Lithioalkyl)phosphinothioic Amides

Carl R. Johnson* and Robert C. Elliott
Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202. Received February 12, 1982

Abstract

N, N, P\)-Trimethyl- P-phenylphosphinothioic amide (1) was prepared from phenylphosphonothioic dichloride by sequential treatment with methylmagnesium halide, sulfuryl chloride, and dimethylamine. Treatment of $\mathbf{1}$ in tetrahydrofuran with butylithium afforded P-(lithiomethyl)- N, N-dimethyl- P-phenylphosphinothioic amide (2). Aldehydes and ketones upon treatment with 2 provided stable β-hydroxy adducts, which upon treatment with methyl iodide and pyridine in acetone underwent smooth decomposition to yield alkenes. Alkylation of 2 provided higher homologues of $\mathbf{1}$ that were demonstrated to be useful in the production of tri- and tetrasubstituted alkenes. Pure (E)- and (Z)-alkenes were prepared by chromatographic separation of appropriate β-hydroxy adducts prior to treatment with methyl iodide and pyridine.

Relatively few reactions discovered in the last 30 years have had the impact on synthetic organic chemistry as has the Wittig reaction. ${ }^{1,2}$ In many systems the reaction is problem free. In other cases difficulties can arise from threee sources-problems occur in separation of the triphenylphosphine oxide from the alkene, difficultly separable mixtures of (E) - and (Z)-alkenes are often formed, and low or neglible yields can result due to the moderate reactivity of phosphonium ylides. A number of phos-phorus-stabilized carbanionic reagents also have been used in carbonyl alkylidenation reactions; the names of Horner, Wittig, Wadsworth, and Emmons are associated with these reactions. ${ }^{2-4}$ The cycloelimination of alkenes from the oxyanion formed by addition of the carbanion to the carbonyl groups occurs readily in those cases where the alkene is conjugated to another π system ($\mathrm{C}=\mathrm{C}, \mathrm{Ar}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N}$, etc.). The elimination is presumed to occur via the intermediacy of a cyclic phosphorane (eq 1). In
the $\mathrm{P}=\mathrm{O}$ class of stabilized carbanions, the majority of the work has been done with phosphonates, most of which are readily available through Arbuzov reactions, but phosphine oxide carbanions have received some attention. ${ }^{2}$ There are surprisingly few reports on the chemistry of $\mathrm{P}=\mathrm{S}$ stabilized carbanions. ${ }^{2}$ The most cogent study is that of Corey and Kwiatkowski who examined the production of alkenes from aldehydes and ketones and dimethyl (1 -lithioalkyl)phosphonothionates (e.g., eq 2). ${ }^{5}$

[^2]Scheme I

Scheme II

In this paper we describe a new phosphorus-based method for the alkylidenation of ketones and selected aldehydes that we believe will find considerable utility, especially in those cases that are inert or sluggish in their reactions with phosphonium ylides. Our method is outlined in Scheme I. The synthesis of the parent reagent, N, N, P-trimethyl- P-phenylphosphinothioic amide (1) (bp $\left.110^{\circ} \mathrm{C}(0.1 \mathrm{~mm})\right),{ }^{5}$ is shown in Scheme II. The starting phenylphosphonothioic dichloride (4) is commercially available ${ }^{6}$ and quite inexpensive.?

The choice of (dimethylamino) phenylphosphinothioyl carbanions as reagents was based on the premises that the carbanions would be considerably more nucleophilic than phosphonium ylides and that activation of the phosphorus centers toward nucleophilic additions of the oxyanions to form the necessary phosphoranes for cycloelimination of the alkenes could be achieved by facile alkylations of the initial adducts 3 at sulfur. ${ }^{8,9}$

[^3]
[^0]: (1) (a) Weiss, U.; Edwards, J. M. "The Biosynthesis of Aromatic Compounds"; Wiley: New York, 1980. (b) Haslam, E. "The Shikimate Pathway"; Wiley: New York, 1974. (c) Ganem, B. Tetrahedron 1978, 34, 3353-3383
 (2) (a) Gibson, M. I.; Gibson, F. Biochim. Biophys. Acta 1962, 65 , 160-163. (b) Gibson, F.; Jackman, L. M. Nature (London) 1963, 198, 388-389.
 (3) Edwards, J. M.; Jackman, L. M. Aust. J. Chem. 1965, 18, 1227-1239.

[^1]: (17) (a) Schmidt, S. M.; Johnston, D. B. R.; Christensen, B. G. J. Org. Chem. 1980, 45, 1135-1142, 1142-1148. (b) Scartazzini, R.; Peter, H. Bickel, H.; Heusler, K.; Woodward, R. B. Helv. Chim. Acta 1972, 55, 408-417. (c) Displacement on dimethyl bromomalonate with the alkoxide of 12 was not attempted since such displacement reactions are notoriously poor: Takemura, K. H.; Pulickal, M.; Hoff, F. O. J. Org. Chem. 1971, 36, 3646-3648.
 (18) (a) Miller, R. B.; Smith, B. F. Synth. Commun. 1973, 3, 359-363 (b) Miller, R. B.; Behare, E. S. J. Chem. Soc., Chem. Commun. 1970, 402-403.
 (19) Prepared from dimethyl malonate by the literature procedure for the diethyl ester: Pardo, S. N.; Salomon, R. G. J. Org. Chem. 1981, 46 2598-2599
 (20) Hanessian, S. Carbohydr. Res. 1966, 2, 86-88

[^2]: (1) Maercker, A. Org. React. (N.Y) 1965, 14, 270.
 (2) Cadogan, J. I. G., Ed. "Organophosphorus Reagents in Organic Synthesis"; Academic Press: New York, 1979.
 (3) Wadsworth, W. S., Jr. Org. React. (N.Y) 1977, 25, 73.
 (4) Sulfur- and silicon-based reagents have also proven to be of considerable utility in carbonyl alkylidenation reactions. For leading references for sulfur-based reagents, see: Johnson, C. R.; Kirchhoff, R. A. J. Am. Chem. Soc. 1979, IOI, 3602. For a recent review of silicon-based olefinations, see: Colvin, E. "Silicon in Organic Synthesis"; Butterworths: London, 1981.

[^3]: (5) Corey, E. J.; Kwiatowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654
 (6) Aldrich Chemical Company, Inc. Milwaukee, Wi.
 (7) The preparation of P-methyl- P-phenylphosphinothioic chloride by the method shown in Scheme II has been described. For example, see: Maier, L. Chem. Ber. 1961, 94, 3034, 3051. Schlor, H.; Schrader, G. German Patent 1067021,1961 ; Chem. Abstr. 1962, 56, 10191 f .
 (8) The $\mathrm{P}=\mathrm{S}$ functionality is well-known to undergo alkylation at sulfur; for a recent example, see: Omelanczulk, J.; Perkokowska, W.; Mikolajczyk, M. J. Chem. Soc., Chem. Commun. 1980, 24.
 (9) Electrophilic activation of a $\mathrm{P}=\mathrm{S}$ group toward addition of a β-oxygen function has been achieved by Corey and Kwiatkowski (ref 5) using silver ion.

